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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

1541-TR 3
1541-TR &
1541-TR 5

Tachi_mm £
LJTL=LIv O

1541-TR 7
1541-TR 8
1541-TR 9

1541-TR 10

1541-TR 11

1541-TR 12

1541-TR 13

1541-TR 14

15L41-TR 15

1541-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

L ammon T Theo. -

Time-COptimal Bounded Fhase Coordinate Control of Linear
Recurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation of a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of a Linear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of Linear Systems with
Linear Controllers

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle

A Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts

and objectively discusses the significance of the results obtained.

The

results of inconclusive and/or unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate fcr sections O, 8, and 16.

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable yields a correct result.



iii

In section 3 it is shown that the problem of controlling m components
(1 <m < n), of the state vector for an n-th order linear constant coefficient
pPlant, to zero in finite time can be reformilated as & problem of controlling
a single component.

Section 4 shows Pontriagin's Maximum Principle is often a sufficient
condition for sptimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section T.

In section 8 a maximum principle is proven for time-optimal control
with\bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

Section 10 presents a reformulation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 11.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example,

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.
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A NOTE ON SYSTEM TRUNCATION

+

By E. R. Rang

ABSTRACT
) 559

The problem of control design of high order systems based
on the characteristics of the lower order essential elements of
the system is considered by approximation of asymptotic, some-
times called singular perturbation, type. A preliminary general
development is given and detail calculations for a simple problem
are written out. These results indicate that the technique

leads to the same design found by previous linvestigators and the

only advantage appears to be an estimate of errors. Aethon

INTRODUCTION
A large number of problems devolve to an estimation of
solutions of differential equations of high order from solutions
of equations of much lower order obtained by "truncating" the
original system. A general analytical estimating procedure
for the case in which the system of equations has constant
coefficients is outlined, and a particular example 1is in-

vestigated.

GENERAL DEVELOPMENT

Suppose that the system can be written in the form

- - — P o W D T e - - - - -

* Prepared under contract NASw-563 for the NASA.

I Senior Research Engineer, Minneapollis-Honeywell Regulator Company,
Minneapolis, Minnesota.



x = Af(e)x + B(e)y + a(e) u(t)

(1)

ey = C(e)x + D(e)y + b(e) u(t)

in which the vector x has m components, y has n components, and

u(t) is a single forcing function. The constant matrices A(e),

B(e), C(e), D(e) and vectors a(e), b(e) are of compatible dimensions,
of course, and differentiable 1n €; € is assumed to be a positive
scalar parameter which will be regarded as small. In applications,
it will be the reciprocal of some gain parameter.

If e—>0, equations (1) reduce to a system of order m,

A(O) @ + B(0)y + a(0) u(t)

@
0

(2)

c(0) @ + D(0)y + v(0) u(t),
which will be called the reduced system. Now assume det D(0) # O

so that the second equation of (2) may be solved to give
¥ = - DH(0)[C(0) @ + b(0) u(t)], (3)

@ = [A(0) - B(0)D™(0)c(0)] @ + [a(0) - B(O)D™1(0)b(0) Ju(t) (4)

or
9 = F(0) @ + £(0)u(t), 9(0) = o, (5)

where

F(0) = A(0) - B(0)D™1(0)c(0) and £(0) = a(0) -B(0)D~1(0)b(0).

Suppose now, that a function u(t) which takes ¢ from an initial
point ? to the origin time-optimally or according to some other
criterion has been found. The problem is to estimate the behavior
of the solutions x, y of equation (1) which initiate from XgsYge
Hence, a formula in € for the errors € = x-9, = y -~ ¥, starting with

initial conditions



eo =X " 9%
N, = Yy - ¥y = Yo + DT(0)[C(0)9, + b(0) u(0) ], (6)
is sought.
ERROR EQUATIONS
The differential equations for the errors are
£ = A(e)¢ + B(e)n + {a(e)-A(0)-[B(c)-B(0) D™ (0)c(0)} @
+ {a(e) - a(0)- [B(e)-B(0) ID1(0)b(0)u(t)
en= C(e)€ + D(e)q + {c(e) - D(e)D7(0)C(0) (7)
+ ep71(0)c(0) F(0)} o + {b(e) - D(e)D™(0)b(0)

-1 -1 .
+ ed™H{0)c(0) £(0)) u(t) + eD™H(0)b(0)u(t).

But with relay control, u(t) does not exist everywhere. Hence,
a transformation
N = - D(e)c(e)g + DTH(0)b(0) u(t) (8)

is made (the second term is added to introduce a factor of € in
the é-term), and the error equations become

& = F(e)& + B(e)C + G(e)o + g(e) u(t)

e = ep™M(e)C(e)F(e)E + [D(e) + e (e)C(e)B(e)] ¢ (9)

+ H(e) o + h(e) u(t),

where the abbreviations

F(e) = A(e) - B(e)D'l(e)C(e)

G(e) = A(e) - A(0) - [B(e)-B(0) ID"1(0)c(0)

g(e) = a(e) - a(0) + B(0) D™1(0)b(0) (10)

H(e) = c(e) - D(e)D™1(0)c(0) + ed™1(0)c(0)F(0)+
+ eD—l(e)C(e)G(e)
h(e) = b(e) + eD™1(0)c(0)£(0) + D L(e)C(e)g(e).

have been introduced. The solution which is desired has the initial




conditions
I R
£, =M, + DH(e)c(e)€, - DTH(0)b(0)u(0) (11)

=y, + D7H(e)c(e)(x,-9,) + D7H(0)c(0)g, .

THE CONSTRUCTION
Solutions of equation (9) of the form
E(t,e) = p(t,e) + eP(t,e€)

(12)
C(t,(—:) = Q(txe) + €Q(t,€)

are sought. After substituting these in (9), powers of € are

identified so that the functions p, q, P, Q are required to satisfy
b = F(0) p + B(0)q + B(0)D™H(0)b(0)u(t) “
€q = D(e)q + b(0) u(t) »

P = F(0)P + B(0)q + ELL=F(O) (pyep) + Ble)-B(O)(gicq)
+ G(e)p + éiflééigl—u(t)

€eQ = D(e)q + D-l(e)C(e)F(e)(p+eP) + eD'l(e)C(e)B(e)Q

+ H(e)o + r—‘-(Elé-‘?-(g-)--u(t)

(14)

with the initial conditions

(15)

0
= 2 D7H(0)c(0) - D7He)e(e) Ty,

O
|

Then equation (5) may be solved for @, the second equation of (13)




solved for q, the first for p, and finally the higher order errors
from (14) may be estimated.
Let ®(t) be a funamental matrix of the homogeneous part of
(5), viz.,
¢ = F(0) ®, @(0) =1, (16)
and ¥(t,e) be the corresponding result for the second equation of

(13):

¥ = 2D(e)¢, ¥(0,e) =1I. (17)
Then
of+) &l+\en L rt.*h- \erln) {~\Aa
Y\v) = "\ulvo T JO “\T-T/ji\U,; U\7,G7
a(t) = Y(t,e)qo + % ftY(t-T,e)b(O) u(t)dr (18)
o}
t
p(t) = ®(t)p, + [ ®(t-7) [B(0)a(7) + B(0)D™*(0)b(0)u(r)ldr,
o]
and .
P(t) = ¢(t)PO + [ ¢(t-1) J(1)dT
° 4 (19)
Q(t) = ¥(t,e)q, + £ [ ¥(t-1¢) K(1)ar,
O
where
3(t) = B(o)a(t)+ ELELFIO) ro(t)rep(e)] + BLELBlOMrq(t)req(t)]
K(t) = D™ (e)c(e)F(e) [p(t)+ep(t)] +eD 1 (e)C(e)B(e)Q(t) (20)
+H(e) (t) + ne)=B(0) 4y,
CONVERGENCE

Sufficient hypotheses must be added so that




e—>0
(t > 0). (21)

(t,e) >0
L e——->O+

These imply {(t,e)—————>0 -D71(0)b(0)u(t), (t > 0). Certainly
the convergence will no%obe uniform at t = 0, if the initial
condlitions &o, N, are not zero. There will be sort of a boundary
layer here. Also trouble at the switching points of u(t) is
expected since f(t,e) will be continuous in t.

Now the basic supposition is made:

Hypothesis A: The characteristic roots of the matrix D(e) have

negative real parts. More precisely, if di(e) = ai(e) + VCT'Bi(e)

are those characteristic roots, there is a constant o such that
ai(e) <0, i=1,2,...,n.

Thus, the part of the system which is thrown away in the truncation

is required to be stable and remain stable as e—->0+. With this

assumption and the norm M of a matrix M as the sum of the

absolute values of all its elements, a constant R can be found

such that

1 - %
e(t,e)ll =l eED(€ tli < Re et; t >0, e2>o0. (22)

This will be a basic tool for making estimates.

The first victim will be the integral in the second equation
of (18). Assume that u(t) has at most a finite number of jump
discontinuities. If t is not one of these points, it is easy to
show that

im, %-g ¥(t-7,¢)b(0)u(t)dr = -D7(0)b(0)u(t). (23)
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In any event the limit is -D"l(o)b(O)u(t-O).

Calculate as follows:
D () [¥(t,e)-IIb(0)u(t-v)

%ft‘!(t-'r,e)b(g)u('f)d‘f -
© + 1 1 ¥(t-7,€)b(0) [u()-u(t-v) lar,
(o}

where v 1s chosen so that u(t) is continuous on [t-v,t). Let
0 < v << t, and write the last term as
t t-v t
H l N l H l 1
iz J izl li+liz/) .
€05 €0 € t-v
For the first integral, with juf < U,
- 2y

a
t-v - =(t-1) : €
€ dt < 2R|b(0)]JU e .

1 t-v 1, ‘
hgg Hgngwmzvg e < a

For the second quantity, since u(t) - u(t-v) is continuous in

[t-v,t), apply the mean value theorem to

t - 2(t-7)
2 7<) [ e € Ju(r)-u(t-v) lds.
t-v t-v
such that

Hence, it is asserted that there is a tl, t-v < tl < t
a a
t - =(t-T) - =(t-1)
/] e ¢ Ju(t)-u(t-v)ldt =ju(t,)-u(t-v)} e € ar
t-v 1 t-v €

m ]

1
<L u(ty) - u(e-v)1.
Finally, with v = Y€, let e—>0" and conclude that
R
Iz J ¥(t-t,e)p(0) [u(t)-u(t-v)] arl
(o]
>0, (t > 0).

>0.

The rest follows since [[¥(t,e)]] T
e—>0
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Now turning to the integral in the third of equations 18,
it can be shown that

€EE§O+ p(t) = &(t) p,, (t > 0). (24)

Equations (19) may be analyzed with similar considerations

since over a finite time interval P, Q are bounded. A conjecture is

1im , Q(t) = - D71(0) 1lim , K(t-0). (25)
e—>0 e—>0

In any case, with sufficient patience, explicit formulas for the
bounds on P, Q may be calculated. It is probably wiser to cal-
culate these bounds for each example rather than to work out a
general formula.
REMARKS

This calculation appears to be a complicated way of doing
straightforward analysis since the equations considered have con-
stant coefficients and explicit solutions may be immediately written.
Nevertheless, it does have some merit in that the detailed structure
of the coefficient matrix does not need to be considered to arrive
at qualitative statements about the solution behavior. This
procedure may be generalized to time-varying and nonlinear equations,
and perhaps will be of greater utility in these cases. Nevertheless,
it has been shown that a particular truncation process can be
analytically formulated and qualitative estimates of the system be-
havior can be obtained.

The preceding calculations are summarized by the following
formulas: the solutions of equations (1) with initial conditions
Xys Yo can be estimated in terms of the solutions of the reduced

o
equations (2) with initial conditions Py Vo bY
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il

9(t) + p(t,e) + eP(t,e)
#(t) + DE(0)b(0)u(t)-DL(e)c(e)[p(t,e)+eP(t,e)]  (26)

+ q(t,e) + eQ(t,e),

x(t)

y(t)

and in the event that the roots of D(e) are stable and Xy = 9y
then

lim x(t) = @(t) [t > 0, t = points of

e—>0 discontinuity of u(t)]. (27)

lm o y(t) = p(t),

e—>0

AN EXAMPLE OF ASYMPTOTIC APPROXIMATION
Consider a simple third order plant which has a transfer
function given by the expression
s(rs+1§(us+17 (28)

where pu<<t. An attempt is made to regulate this plant time-
optimally but with a second order controller since it is

reasonable that the factor (us+1l) will have little effect. The
design of the proper controller 1is answered by J. A. Lovingood

in reference 1. However, that design requires that the entire

state of the third order system be measured or else an approximation
must be made the consequences of which are not easily determined.

A search is made for an approximate controller using asymptotic
analysis more or less along the lines of the previous general
discussion. The results are compared with the mechanlization given
by Lovingood’s procedure.

DEVELOPMENT

The differential equation associated with the transfer function
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-t/ -t/u
x(t) = kt + A + Be + Ce (29)

when the plant is assumed to be driven by a plus one forcing
function. The particular solution originating from the point
(xo,io,§3 at time t=0 is

x(t) = kt + [xo-(1+u)(k-io) + T io]

il SR B 7% SN VA ORI B (T
L T I AT S (30)
and 1ts derivative is found to be
-t/t -t/n
y = Kk = X rex -u ¥ Y
x(t) = k T [k X, M xo]e + T-u[k'xo Txo]e (31)

For £t > v > O, where v is a small constant, the exponential
e-t/u will be very small for small values of p > 0. In fact, there
is a suitable constant An such that

M AR, (t ) (32)

for all positive integers n. We say that e't/u is asymptotic to
zero and write

e "Moo, (¢ 5 v, (1—0). (33)
Hence (30) and (31) may be approximated asymptotically by the
relations

x(t)=kt + [x_-(rHu) (k-x, )+Tux I+ ?gé-[k_ko-uigle-t/T (34)

. T . e -t/'r

X(t)kk - ,—r-_—‘r [k-xo—uxo ]e

and by combining the two expressions we get
k-x(t

k-xo-u'X:] + [xg-(Th) (kx4 Jeelk-x(t)]. (35)

x(t)=-tk log [T;u-

Repeating the definition of asymptotics, all that is meant by

relation (35), which is of the form
flt)=o(t), (36)
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is that there is a constant An for each n such that

1£(t) - o(t) | < A u™ (u>0, t2 ). (37)
Thus, equation (35) asserts that the approximation becomes better
the smaller p is taken and holds exactly in the 1limit as u——>0+.
(Reference 2 gives a good exposition of this type of analysis.)
Assume that there is a switching curve in the xx-phase plane
of the form shown in the figure. If a switch is made at (xo, io)

)

from a & -position to + for the forcing function, the quantity

io will in general be arbitrary and will cause a deviation from
the switching curve. 1Indeed, the system is of third order and will
not usually follow this projection in the xx-plane. This deviation
may drive the phase point back into the = -region so that it is
possible to have several switches on the way to the origin. For
analysis, assume that io is such that the trajectory remains in the
& -switching region and so an error e€(t) is defined to be

e(t) = x,(0) - x(t), (38)
where the switching curve has been parameterized by o so that
x,(0) 1s the original initial value x  and io(a) = x(t).
Assuming that

e(t) >0, 0<t <t , and x(t,) = 0,

we find

A= e(to) - xo(oo)azrk log [T;“ . k-ik-ui ]
, o ° 0 (39)
- [Xo - (T+u)(k-xo) + Tuon - 1k,

or after manipulating with logarithms
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wx
~ - By - ox - - 9
A~pk + Tk log (1 T) Tk, - Tk log (1 k'xo)

%, (40)
- X, - () X, - Tk log (1- E_)'
Since nothing can be done with the terms in io’
x
- - v - - 9
X, = (t+u) X, - Tk log (1 m ) + xo(oo) (41)

is chosen as the switching curve. There will be a dead zone of
half-length xo(oo) along the x-axis (usually xo(co) = 0) and the
trajectory will miss the origin by an error of .
wx
~ - Ky _ X - - 0 -
A=~pk + Tk log (1 T) wm¥, - Tk log (1 k'xo) xo(oo). (42)
Note that as p—>0 the exact formula for the second order case,

namely

X, = - 1'[xo + k log (1- EQ)], (xo < 0, xo(oo) = 0), (43)

is recovered from equation (41).

LOVINGOOD'S TECHNIQUE
The transformed equation is
x(ts + 1)(us+1)X = ku/s. (44)
The method of reference 1 is to introduce a new dependent variable
y(t),

Y = (us+l) X (45)
and to control it time-optimally. The equation for y(t) is
obviously

s(ts + 1)Y = ku/s (46)

and the switching curve is

. Yorq =
Yo = -'1[yo + k log (1- EQ)]’ Yo < 0. (u7)

Since y = x + ux, this gives

. . 0 o)
Xo = - (b + T) X, = T X, - Tk log (1- )

(48)
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If the io—terms are simply ignored we return to the previous
formula (41).

Thus, the method of asymptotic analysis of the equations of
motion for this problem leads to the same control found by

J. A. Lovingood in previous work.

CONCLUSIONS
An advantage the asymptotic approximation method appears to

offer over other methods is its capability for estimating errors.
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